Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Allergy Asthma Proc ; 45(2): 128-136, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449018

RESUMEN

Background: Oral immunotherapy (OIT) can impose psychological burdens on patients and their parents due to the necessary preparations and repeated adverse reactions. Objective: To investigate changes in quality of life (QoL) and psychological burden in parents of children receiving OIT for food allergy (FA). Methods: Children aged 3-13 years with FA were enrolled. Parents were asked to fill out the Korean versions of the Food Allergy Quality of Life-Parental Burden (FAQL-PB), the Korean versions of the Food Allergy Quality of Life-Parental Form (K-FAQLQ-PF), the Korean versions of the Beck Anxiety Inventory (K-BAI), and the Korean version of the Patient Health Questionnaire-9 (PHQ-9) for depression before OIT (T1), after 2 months of updosing (T2), and after the end of the updosing phase (T3). Results: A total of 111 parents were enrolled. The total FAQL-PB scores were decreased at T2 and T3 compared with those at T1 (all p < 0.001). Greater improvement in the total FAQL-PB score at T2 was noted in parents with a higher parental burden (FAQL-PB score ≥ 74 points) at baseline than in those with a lower parental burden (p = 0.001). Among the K-FAQLQ-PF domains, "food anxiety" scores were decreased at T2 and T3 compared with those at T1 (p = 0.049 and p = 0.030, respectively), whereas there was no change in "social and dietary limitation" and "emotional impact" scores between T1 and T2 and between T1 and T3. However, no differences were observed in K-BAI and PHQ-9 scores between T1 and T2 and between T1 and T3. Conclusion: Our results suggest that OIT improves parental burden and QoL in parents of children with FA.


Asunto(s)
Hipersensibilidad a los Alimentos , Calidad de Vida , Niño , Humanos , Hipersensibilidad a los Alimentos/terapia , Alimentos , Difenhidramina , Inmunoterapia , Padres
2.
Artículo en Inglés | MEDLINE | ID: mdl-38442771

RESUMEN

BACKGROUND: Food allergy (FA) often occurs in early childhood with and without atopic dermatitis (AD). FA can be severe and even fatal. For primary prevention, it is important to find early biomarkers to predict the future onset of FA before any clinical manifestations. OBJECTIVE: Our aim was to find early predictors of future onset of FA in the stratum corneum (SC). METHODS: Skin tape strips were collected from the forearm of newborns (n = 129) at age 2 months, before any signs of clinical FA or AD. Children were clinically monitored until they reached age 2 years to confirm the presence or absence of FA and AD. Skin tape strips were subjected to lipidomic analyses by liquid chromatography-tandem mass spectrometry and cytokine determination by Meso Scale Discovery U-Plex assay. RESULTS: Overall, 9 of 129 infants (7.0%) developed FA alone and 9 of 129 infants (7.0%) developed FA concomitantly with AD. In the stratum corneum of children with future FA and concomitant AD and FA, absolute amounts of unsaturated (N24:1)(C18-sphingosine)ceramide and (N26:1)(C18-sphingosine)ceramide and their relative percentages within the molecular group were increased compared with the amounts and percentages in healthy children, with P values ranging from less than .01 to less than .05 according to ANOVA. The children with future AD had normal levels of these molecules. IL-33 level was upregulated in those infants with future FA but not in those with future AD, whereas thymic stromal lymphopoietin was upregulated in those with future AD but not in those with future FA. Logistic regression analysis revealed strong FA predicting power for the combination of dysregulated lipids and cytokines, with an odds ratio reaching 101.4 (95% CI = 5.4-1910.6). CONCLUSION: Noninvasive skin tape strip analysis at age 2 months can identify infants at risk of FA in the future.

3.
Heliyon ; 10(6): e28092, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533031

RESUMEN

Ubiquitination of RIPK1 plays an essential role in the recruitment of the IKK complex, an upstream component of pro-survival NF-κB. It also limits TNF-induced programmed cell death by inhibiting the spatial transition from TNFR1-associated complex-I to RIPK1-dependent death-inducing complex-II or necrosome. Thus, the targeted disruption of RIPK1 ubiquitination, which induces RIPK1-dependent cell death, has proven to be a useful strategy for improving the therapeutic efficacy of TNF. In this study, we found that eupatolide, isolated from Liriodendron tulipifera, is a potent activator of the cytotoxic potential of RIPK1 by disrupting the ubiquitination of RIPK1 upon TNFR1 ligation. Analysis of events upstream of NF-κB signaling revealed that eupatolide inhibited IKKß-mediated NF-κB activation while having no effect on IKKα-mediated non-canonical NF-κB activation. Pretreatment with eupatolide drastically interfered with RIPK1 recruitment to the TNFR1 complex-I by disrupting RIPK1 ubiquitination. Moreover, eupatolide was sufficient to upregulate the activation of RIPK1, facilitating the TNF-mediated dual modes of apoptosis and necroptosis. Thus, we propose a novel mechanism by which eupatolide activates the cytotoxic potential of RIPK1 at the TNFR1 level and provides a promising anti-cancer therapeutic approach to overcome TNF resistance.

4.
Nat Commun ; 15(1): 1851, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424052

RESUMEN

Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.


Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Proteómica/métodos , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo
5.
Exp Mol Med ; 56(1): 19-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38172594

RESUMEN

Cancer immunotherapy has revolutionized the approach to cancer treatment of malignant tumors by harnessing the body's immune system to selectively target cancer cells. Despite remarkable advances, there are still challenges in achieving successful clinical responses. Recent evidence suggests that immune cell-derived exosomes modulate the immune system to generate effective antitumor immune responses, making them a cutting-edge therapeutic strategy. However, natural exosomes are limited in clinical application due to their low drug delivery efficiency and insufficient antitumor capacity. Technological advancements have allowed exosome modifications to magnify their intrinsic functions, load different therapeutic cargoes, and preferentially target tumor sites. These engineered exosomes exert potent antitumor effects and have great potential for cancer immunotherapy. In this review, we describe ingenious modification strategies to attain the desired performance. Moreover, we systematically summarize the tumor-controlling properties of engineered immune cell-derived exosomes in innate and adaptive immunity. Collectively, this review provides a comprehensive and intuitive guide for harnessing the potential of modified immune cell-derived exosome-based approaches, offering valuable strategies to enhance and optimize cancer immunotherapy.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/patología , Inmunoterapia , Neoplasias/patología , Inmunidad Adaptativa , Sistema Inmunológico
6.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38260676

RESUMEN

Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.

7.
Dev Cell ; 58(19): 1950-1966.e8, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37816329

RESUMEN

Newly synthesized proteins in the endoplasmic reticulum (ER) are sorted by coat protein complex II (COPII) at the ER exit site en route to the Golgi. Under cellular stresses, COPII proteins become targets of regulation to control the transport. Here, we show that the COPII outer coat proteins Sec31 and Sec13 are selectively sequestered into the biomolecular condensate of SCOTIN/SHISA-5, which interferes with COPII vesicle formation and inhibits ER-to-Golgi transport. SCOTIN is an ER transmembrane protein with a cytosolic intrinsically disordered region (IDR), which is required and essential for the formation of condensates. Upon IFN-γ stimulation, which is a cellular condition that induces SCOTIN expression and condensation, ER-to-Golgi transport was inhibited in a SCOTIN-dependent manner. Furthermore, cancer-associated mutations of SCOTIN perturb its ability to form condensates and control transport. Together, we propose that SCOTIN impedes the ER-to-Golgi transport through its ability to form biomolecular condensates at the ER membrane.


Asunto(s)
Retículo Endoplásmico , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Transporte de Proteínas/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo
8.
FASEB J ; 37(5): e22900, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37039823

RESUMEN

Ubiquitin-specific protease 4 (USP4) is highly overexpressed in colon cancer and acts as a potent protooncogenic protein by deubiquitinating ß-catenin. However, its prominent roles in tumor formation and migration in cancer cells are not fully understood by its deubiquitinating enzyme (DUB) activity on ß-catenin. Thus, we investigated an additional role of USP4 in cancer. In this study, we identified cortactin (CTTN), an actin-binding protein involved in the regulation of cytoskeleton dynamics and a potential prognostic marker for cancers, as a new cellular interacting partner of USP4 from proximal labeling of HCT116 cells. Additionally, the role of USP4 in CTTN activation and promotion of cell dynamics and migration was investigated in HCT116 cells. We confirmed that interacting of USP4 with CTTN increased cell movement. This finding was supported by the fact that USP4 overexpression in HCT116 cells with reduced expression of CTTN was insufficient to promote cell migration. Additionally, we observed that USP4 overexpression led to a significant increase in CTTN phosphorylation, which is a requisite mechanism for cell migration, by regulating Src/focal adhesion kinase (FAK) binding to CTTN and its activation. Our results suggest that USP4 plays a dual role in cancer progression, including stabilization of ß-catenin as a DUB and interaction with CTTN to promote cell dynamics by inducing CTTN phosphorylation. Therefore, this study demonstrates that USP4 is important for cancer progression and is a good target for treating or preventing cancer.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , Células HCT116 , beta Catenina/metabolismo , Cortactina/metabolismo , Movimiento Celular/fisiología , Proteasas Ubiquitina-Específicas/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 14(3): 1441-1453, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37017344

RESUMEN

BACKGROUND: Patients with cancer undergoing chemotherapy experience cachexia with anorexia, body weight loss, and the depletion of skeletal muscles and adipose tissues. Effective treatment strategies for chemotherapy-induced cachexia are scarce. The growth differentiation factor 15 (GDF15)/GDNF family receptor alpha-like (GFRAL)/rearranged during transfection (RET) axis is a critical signalling pathway in chemotherapy-induced cachexia. In this study, we developed a fully human GFRAL antagonist antibody and investigated whether it inhibits the GDF15/GFRAL/RET axis, thereby alleviating chemotherapy-induced cachexia in tumour-bearing mice. METHODS: Anti-GFRAL antibodies were selected via biopanning, using a human combinatorial antibody phage library. The potent GFRAL antagonist antibody A11 was selected via a reporter cell assay and its inhibitory activity of GDF15-induced signalling was evaluated using western blotting. To investigate the in vivo function of A11, a tumour-bearing mouse model was established by inoculating 8-week-old male C57BL/6 mice with B16F10 cells (n = 10-16 mice per group). A11 was administered subcutaneously (10 mg/kg) 1 day before intraperitoneal treatment with cisplatin (10 mg/kg). Animals were assessed for changes in food intake, body weight, and tumour volume. Plasma and key metabolic tissues such as skeletal muscles and adipose tissues were collected for protein and mRNA expression analysis. RESULTS: A11 reduced serum response element-luciferase reporter activity up to 74% (P < 0.005) in a dose-dependent manner and blocked RET phosphorylation up to 87% (P = 0.0593), AKT phosphorylation up to 28% (P = 0.0593) and extracellular signal regulatory kinase phosphorylation up to 75% (P = 0.0636). A11 inhibited the action of cisplatin-induced GDF15 on the brainstem and decreased GFRAL-positive neuron population expressing c-Fos in the area postrema and nucleus of the solitary tract by 62% in vivo (P < 0.05). In a melanoma mouse model treated with cisplatin, A11 recovered anorexia by 21% (P < 0.05) and tumour-free body weight loss by 13% (P < 0.05). A11 significantly improved the cisplatin-induced loss of skeletal muscles (quadriceps: 21%, gastrocnemius: 9%, soleus: 13%, P < 0.05) and adipose tissues (epididymal white adipose tissue: 37%, inguinal white adipose tissue: 51%, P < 0.05). CONCLUSIONS: Our study suggests that GFRAL antagonist antibody may alleviate chemotherapy-induced cachexia, providing a novel therapeutic approach for patients with cancer experiencing chemotherapy-induced cachexia.


Asunto(s)
Antineoplásicos , Melanoma , Ratones , Humanos , Masculino , Animales , Caquexia/inducido químicamente , Caquexia/tratamiento farmacológico , Factor Neurotrófico Derivado de la Línea Celular Glial , Anorexia/metabolismo , Cisplatino , Ratones Endogámicos C57BL , Antineoplásicos/efectos adversos
10.
Nature ; 616(7958): 790-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921622

RESUMEN

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anafase , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitosis
11.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36762624

RESUMEN

PIWI-interacting RNAs (piRNAs) are small RNAs that play a conserved role in genome defense. The piRNA processing pathway is dependent on the sequestration of RNA precursors and protein factors in specific subcellular compartments. Therefore, a highly resolved spatial proteomics approach can help identify the local interactions and elucidate the unknown aspects of piRNA biogenesis. Herein, we performed TurboID proximity labeling to investigate the interactome of Zucchini (Zuc), a key factor of piRNA biogenesis in germline cells and somatic follicle cells of the Drosophila ovary. Quantitative mass spectrometry analysis of biotinylated proteins defined the Zuc-proximal proteome, including the well-known partners of Zuc. Many of these were enriched in the outer mitochondrial membrane (OMM), where Zuc was specifically localized. The proximal proteome of Zuc showed a distinct set of proteins compared with that of Tom20, a representative OMM protein, indicating that chaperone function-related and endomembrane system/vesicle transport proteins are previously unreported interacting partners of Zuc. The functional relevance of several candidates in piRNA biogenesis was validated by derepression of transposable elements after knockdown. Our results present potential Zuc-interacting proteins, suggesting unrecognized biological processes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteoma/metabolismo , Ovario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Elementos Transponibles de ADN , ARN de Interacción con Piwi , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
12.
J Extracell Vesicles ; 11(12): e12287, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36447429

RESUMEN

T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.


Asunto(s)
Vesículas Extracelulares , Melanoma , MicroARNs , Ratones , Animales , Interleucina-2 , MicroARNs/genética , Antígeno B7-H1 , Linfocitos T CD8-positivos , Melanoma/terapia
13.
Biomaterials ; 289: 121765, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36067566

RESUMEN

Extracellular vesicles (EVs) mediate cell-cell crosstalk by carrying bioactive molecules derived from cells. Recently, immune cell-derived EVs have been reported to regulate key biological functions such as tumor progression. CD4+ T cells orchestrate overall immunity; however, the biological role of their EVs is unclear. This study reveals that EVs derived from CD4+ T cells increase the antitumor response of CD8+ T cells by enhancing their proliferation and activity without affecting regulatory T cells (Tregs). Moreover, EVs derived from interleukin-2 (IL2)-stimulated CD4+ T cells induce a more enhanced antitumor response of CD8+ T cells compared with that of IL2-unstimulated CD4+ T cell-derived EVs. Mechanistically, miR-25-3p, miR-155-5p, miR-215-5p, and miR-375 within CD4+ T cell-derived EVs are responsible for the induction of CD8+ T cell-mediated antitumor responses. In a melanoma mouse model, the EVs potently suppress tumor growth through CD8+ T cell activation. This study demonstrates that the EVs, in addition to IL2, are important mediators between CD4+ and CD8+ T cells. Furthermore, unlike IL2, clinically used as an antitumor agent, CD4+ T cell-derived EVs stimulate CD8+ T cells without activating Tregs. Therefore, CD4+ T cell-derived EVs may provide a novel direction for cancer immunotherapy by inducing a CD8+ T cell-mediated antitumor response.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Interleucina-2 , Ratones , Linfocitos T Reguladores
14.
Artículo en Inglés | MEDLINE | ID: mdl-35162367

RESUMEN

Even though environmental impact assessments (EIAs) have been an important tool for environmental decision-making, most EIAs are published as a mix of text and tabular data that is not easily accessible to or understandable for the public. In this paper, we present a decision support system (DSS) that supports the decision-making of stakeholders in the EIA stage. The system was designed to improve the public's understanding of stakeholders before and after a construction project by providing visualization of key environmental elements. We recruited 107 participants to test the usability of the system and examined the impacts of individual differences between the participants on their perceptions of the system, including their environmental expertise and computer self-efficacy. The results showed that the proposed system had high usability, especially for users with high computational efficacy and environment expertise. The system could thus help to improve the communication between the public and experts during public hearings and enhance the environmental literacy of the public.


Asunto(s)
Comunicación , Ambiente , Humanos
15.
Dev Cell ; 56(10): 1512-1525.e7, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33915088

RESUMEN

Cellular senescence is a complex stress response implicated in aging. Autophagy can suppress senescence but is counterintuitively necessary for full senescence. Although its anti-senescence role is well described, to what extent autophagy contributes to senescence establishment and the underlying mechanisms is poorly understood. Here, we show that selective autophagy of multiple regulatory components coordinates the homeostatic state of senescence. We combined a proteomic analysis of autophagy components with protein stability profiling, identifying autophagy substrate proteins involved in several senescence-related processes. Selective autophagy of KEAP1 promoted redox homeostasis during senescence. Furthermore, selective autophagy limited translational machinery components to ameliorate senescence-associated proteotoxic stress. Lastly, selective autophagy of TNIP1 enhanced senescence-associated inflammation. These selective autophagy networks appear to operate in vivo senescence during human osteoarthritis. Our data highlight a caretaker role of autophagy in the stress support network of senescence through regulated protein stability and unravel the intertwined relationship between two important age-related processes.


Asunto(s)
Autofagia , Senescencia Celular , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Factor 3 de Iniciación Eucariótica/metabolismo , Células HEK293 , Humanos , Inflamación/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Modelos Biológicos , Osteoartritis/metabolismo , Osteoartritis/patología , Estrés Oxidativo , Proteostasis
16.
Nat Commun ; 12(1): 1097, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597549

RESUMEN

Telomeres are part of a highly refined system for maintaining the stability of linear chromosomes. Most telomeres rely on simple repetitive sequences and telomerase enzymes to protect chromosomal ends; however, in some species or telomerase-defective situations, an alternative lengthening of telomeres (ALT) mechanism is used. ALT mainly utilises recombination-based replication mechanisms and the constituents of ALT-based telomeres vary depending on models. Here we show that mouse telomeres can exploit non-telomeric, unique sequences in addition to telomeric repeats. We establish that a specific subtelomeric element, the mouse template for ALT (mTALT), is used for repairing telomeric DNA damage as well as for composing portions of telomeres in ALT-dependent mouse embryonic stem cells. Epigenomic and proteomic analyses before and after ALT activation reveal a high level of non-coding mTALT transcripts despite the heterochromatic nature of mTALT-based telomeres. After ALT activation, the increased HMGN1, a non-histone chromosomal protein, contributes to the maintenance of telomere stability by regulating telomeric transcription. These findings provide a molecular basis to study the evolution of new structures in telomeres.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telomerasa/genética , Homeostasis del Telómero/genética , Telómero/genética , Animales , Proteínas de Unión al ADN/genética , Epigenómica/métodos , Células HEK293 , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Proteómica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Telomerasa/metabolismo , Telómero/enzimología , Factores de Transcripción/genética
17.
Nucleic Acids Res ; 49(5): e28, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33332543

RESUMEN

RNA-protein interaction is central to post-transcriptional gene regulation. Identification of RNA-binding proteins relies mainly on UV-induced crosslinking (UVX) followed by the enrichment of RNA-protein conjugates and LC-MS/MS analysis. However, UVX has limited applicability in tissues of multicellular organisms due to its low penetration depth. Here, we introduce formaldehyde crosslinking (FAX) as an alternative chemical crosslinking for RNA interactome capture (RIC). Mild FAX captures RNA-protein interaction with high specificity and efficiency in cell culture. Unlike UVX-RIC, FAX-RIC robustly detects proteins that bind to structured RNAs or uracil-poor RNAs (e.g. AGO1, STAU1, UPF1, NCBP2, EIF4E, YTHDF proteins and PABP), broadening the coverage. Applied to Xenopus laevis oocytes and embryos, FAX-RIC provided comprehensive and unbiased RNA interactome, revealing dynamic remodeling of RNA-protein complexes. Notably, translation machinery changes during oocyte-to-embryo transition, for instance, from canonical eIF4E to noncanonical eIF4E3. Furthermore, using Mus musculus liver, we demonstrate that FAX-RIC is applicable to mammalian tissue samples. Taken together, we report that FAX can extend the RNA interactome profiling into multicellular organisms.


Asunto(s)
Proteómica/métodos , Ribonucleoproteínas/análisis , Animales , Reactivos de Enlaces Cruzados , Embrión no Mamífero/metabolismo , Formaldehído , Células HeLa , Humanos , Hígado/metabolismo , Masculino , Ratones , Oocitos/metabolismo , Péptidos , Ribonucleoproteínas/metabolismo , Rayos Ultravioleta , Xenopus laevis
18.
Sci Rep ; 10(1): 20298, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219319

RESUMEN

The low-cost 'THz Torch' wireless link technology is still in its infancy. Until very recently, inherent limitations with available hardware has resulted in a modest operational figure of merit performance (Range [Formula: see text] Bit Rate). However, a breakthrough was reported here by the authors, with the introduction of 'Cognitive Demodulation'. This bypassed the thermal time constant constraints normally associated with both the thermal emitter and sensor; allowing step-change increases in both Range and Bit Rate with direct electronic modulation. This paper concentrates on advancements to the bit error rate (BER) performance. Here, separate techniques are introduced to the demodulation software that, when combined, result in enhanced Cognitive Demodulation. A factor of more than 100 improvement in BER was demonstrated within the laboratory and approximately a 60-fold improvement in a non-laboratory environment; both at the maximum Range and Bit Rate of 2 m and 125 bps, respectively, demonstrated recently. Moreover, demodulation speed is increased by almost a factor of 10,000; allowing for real-time demodulation while easing future computational hardware requirements. In addition to these software advancements, the paper demonstrates important improvements in hardware that has brought the technology out of the laboratory, with field trials being performed within an office corridor.

19.
Proc Natl Acad Sci U S A ; 117(22): 12109-12120, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414919

RESUMEN

The mitochondria-associated membrane (MAM) has emerged as a cellular signaling hub regulating various cellular processes. However, its molecular components remain unclear owing to lack of reliable methods to purify the intact MAM proteome in a physiological context. Here, we introduce Contact-ID, a split-pair system of BioID with strong activity, for identification of the MAM proteome in live cells. Contact-ID specifically labeled proteins proximal to the contact sites of the endoplasmic reticulum (ER) and mitochondria, and thereby identified 115 MAM-specific proteins. The identified MAM proteins were largely annotated with the outer mitochondrial membrane (OMM) and ER membrane proteins with MAM-related functions: e.g., FKBP8, an OMM protein, facilitated MAM formation and local calcium transport at the MAM. Furthermore, the definitive identification of biotinylation sites revealed membrane topologies of 85 integral membrane proteins. Contact-ID revealed regulatory proteins for MAM formation and could be reliably utilized to profile the proteome at any organelle-membrane contact sites in live cells.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteoma/análisis , Proteínas de Unión a Tacrolimus/metabolismo , Calcio/metabolismo , Humanos , Biogénesis de Organelos , Proteoma/metabolismo , Transducción de Señal
20.
Anal Chem ; 92(7): 4926-4934, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32196314

RESUMEN

Protein expression levels are regulated through both translation and degradation mechanisms. Levels of degradation intermediates, that is, partially degraded proteins, cannot be distinguished from those of intact proteins by global proteomics analysis, which quantify total protein abundance levels. This study aimed to develop a tool for assessing the aspects of degradation regulation via proteolytic processing through a new multiplexed N-terminomics method involving selective isobaric labeling of protein N-termini and immunoaffinity capture of the labeled N-terminal peptides. Our method allows for not only identification of proteolytic cleavage sites, but also highly multiplexed quantification of proteolytic processing. We profiled a number of potential cleavage sites by signal peptidase and provided experimental confirmation of predicted cleavage sites of signal peptide. Furthermore, the present method uniquely represents the landscape of proteomic proteolytic processing rate during early embryogenesis in Drosophila melanogaster, revealing the underlying mechanism of stringent decay regulation of zygotically expressed proteins during early stages of embryogenesis.


Asunto(s)
Proteínas de Drosophila/análisis , Péptidos/análisis , Animales , Drosophila melanogaster/embriología , Desarrollo Embrionario , Proteolisis , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...